2021

MATHEMATICS - HONOURS

Paper : CC-5
Full Marks : 65
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.
\mathbb{R} denotes the set of real numbers.
Group - A
(Marks : 20)

1. Answer the following multiple choice questions having only one correct option. Choose the correct option and justify :
$(1+1) \times 10$
(a) $\lim _{x \rightarrow 0} \frac{x e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}=$
(i) 0
(ii) 1
(iii) $\frac{1}{2}$
(iv) does not exist.
(b) $\lim _{x \rightarrow 0}\left(\frac{\sin \frac{1}{x}}{x}+x \sin \frac{1}{x}\right)=$
(i) 2
(ii) 0
(iii) does not exist
(iv) 1 .
(c) f is defined in $(0,4)$ by $f(x)=2 x-2[x]$. Then
(i) f is continuous at $x=1$
(ii) f is monotone decreasing in $(0,4)$
(iii) f is not continuous at $x=1$
(iv) f is constant in $(0,4)$.
(d) Which of the following functions has finite number of points of discontinuity in \mathbb{R} ?
(i) $\tan x$
(ii) $x[x]$
(iii) $f(x)=\left\{\begin{array}{l}\frac{|x|}{x}, \text { if } x \neq 0 \\ 0, \text { if } x=0\end{array}\right.$
(iv) $\sin [\pi x]$.
(e) A real-valued continuous function f assumes only irrational values in $[1,2]$ and $f(1 \cdot 5)=\sqrt{\pi}$, then
(i) $f(x)=1 / 2$ everywhere in $[1,2]$
(ii) $f(x)=0$, everywhere in $[1,2]$
(iii) $f(x)=\sqrt{\pi}$, everywhere in $[1,2]$
(iv) $f(x)=\pi$, everywhere in $[1,2]$.
(f) $f(x)=x^{2}, x \in \mathbb{R}$, then
(i) f is uniformly continuous in $(a, \infty), a \in \mathbb{R}$
(ii) f is not continuous in $(a, \infty), a \in \mathbb{R}$
(iii) f is constant in $(a, \infty), a \in \mathbb{R}$
(iv) f is uniformly continuous in $[a, b]$ but not uniformly continuous in (a, ∞), where $-\infty<a, b<\infty$.
(g) A function f is defined in $[-1,1]$ by $f(x)=\left\{\begin{array}{lll}1-x^{2} & \text { for } & -1 \leq x<0 \\ x^{2}+x+1 & \text { for } & 0 \leq x \leq 1\end{array}\right.$.

Then
(i) $f^{\prime}(x)=0$ at $x=0$
(ii) $f^{\prime}(x)=1$ at $x=0$
(iii) f is not differentiable at $x=0$
(iv) f is not continuous at $x=0$.
(h) $f(x)=x^{x}, x>0$, then
(i) $f(x)$ has a local maximum at $x=1 / e$
(ii) $f(x)$ has a local minimum at $x=e$
(iii) $f(x)$ has neither a local minimum nor a local maximum at $x=1 / e$
(iv) $f(x)$ has local minimum at $x=1 / e$.
(i) $\lim _{x \rightarrow 0} \frac{x-\tan x}{x^{3}}=$
(i) $-1 / 2$
(ii) $1 / 3$
(iii) $+\frac{1}{2}$
(iv) $-1 / 3$.
(j) Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable on $[a, b]$ such that $f^{\prime}(x) \neq 0 \forall x \in(a, b)$. Then on $[a, b]$
(i) f is either increasing or decreasing.
(ii) f is neither increasing nor decreasing.
(iii) f is a constant function
(iv) $f(x)=0$ has no root.

Group - B
 (Marks : 25)

Answer any five questions.
2. (a) Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be such that $\lim _{x \rightarrow c} f(x)=A>0$ and $\lim _{x \rightarrow c} g(x)=\infty$ for some $c \in \mathbb{R}$.

Prove that $\lim _{x \rightarrow c}[f(x) g(x)]=\infty$.
(b) Use the definition of limit to show that $\lim _{x \rightarrow \infty} \frac{x-[x]}{x}=0$.
3. (a) Apply Sandwich theorem to evaluate $\lim _{x \rightarrow 0}(1+x)^{1 / x}$.
(b) If $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function such that $f(x)>0 \forall x \in[a, b]$. Prove that there exists $\alpha>0$ such that $f(x) \geq \alpha \forall x \in[a, b]$.
4. (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that $f(a)<0, f(b)>0$ and $A=\{x \in[a, b]: f(x)<0\}$. If $w=\sup A$, prove that $f(w)=0$.
(b) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that f is continuous at ' 0 ' and f has discontinuity of second kind at every other point in \mathbb{R}.
5. Discuss the continuity of $f(x)$ for $x \geq 0$, where

$$
f(x)=\left\{\begin{array}{cc}
0, & \text { when } x=0 \tag{5}\\
\frac{1}{x}, & \text { when } 0<x<1 \\
\frac{1}{x^{2}} \sin \frac{\pi x}{2}, & 1 \leq x \leq 2 \\
1-e^{2-x}, & \text { for } \\
x>2
\end{array}\right.
$$

6. (a) Evaluate : $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x^{2}}\right)^{x}$
(b) Prove that if $f(x)$ is continuous at $x=a$ and for every $\delta>0$ there is a point $c_{\delta} \in(a-\delta, a+\delta)$ such that $f\left(c_{\delta}\right)=0$, then $f(a)=0$.
7. (a) Show that $f(x)=\frac{1}{x^{2}}$ is uniformly continuous on $[a, \infty)$ for $a>0$ but not uniformly continuous on $(0, \infty)$.
(b) Examine uniform continuity of $\cos \frac{1}{x}$ on (0,2).
8. Prove or disprove : Monotonic decreasing function on \mathbb{R} cannot have jump discontinuity.
9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and $A=\{x \in \mathbb{R}: f(x)>0\}$. If $c \in A$, show that there exists a neighbourhood N_{c} of c such that $N_{c} \subseteq A$.

Using this result, show that $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(x)=(-1)^{[2 x]}$ is discontinuous at ' 1 '. $[x]$ denotes the largest integer not exceeding x.

Group - C
 (Marks : 20)

Answer any four questions.
10. (a) Let f be a real valued function on a closed and bounded interval $[a, b]$. If $f^{\prime}(c)>0$ for some $c \in(a, b)$, prove that f is increasing at $x=c$.
(b) Let $f(x)=x^{5}+4 x+1, x \in \mathbb{R}$. Show that f has a inverse function g which is differentiable on \mathbb{R}. Also find $g^{\prime}(1)$.
11. (a) Let $\phi(x)=f(x)+f(1-x)$ and $f^{\prime \prime}(x)<0$ for all $x \in[0,1]$. Prove that ϕ is increasing in $0 \leq x \leq \frac{1}{2}$ and decreasing in $\frac{1}{2} \leq x \leq 1$.
(b) Show that if two functions have equal derivative at every point of (a, b), then they differ only by constant.
12. (a) Prove that $\log (1+x)$ lies between $x-\frac{x^{2}}{2}$ and $x-\frac{x^{2}}{2(1+x)}$, for all $x>0$.
(b) Show that $\frac{\sin \alpha-\sin \beta}{\cos \beta-\cos \alpha}=\cot \theta$, where $0<\alpha<\theta<\beta<\pi / 2$.
13. (a) Let f be a real valued function on the interval I such that f^{\prime} exists and bounded on I. Prove that f is uniformly continuous on I.
(b) Give an example of a uniform continuous function on $[0,1]$ which is differentiable on $(0,1)$ but the derived function is unbounded on $(0,1)$.
14. State and prove Darboux's theorem on derivatives.
15. (a) Where do the function $\sin 3 x-3 \sin x$ attain local maximum or local minimum values in $(0,2 \pi)$?
(b) Evaluate $\lim _{x \rightarrow 1-} \frac{\log (1-x)}{\cot (\pi x)}$.
16. If the sum of the lengths of the hypotenuse and the another side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between these sides is $\pi / 3$.

