V(3rd Sm.)-Mathematics-H/CC-5/CBCS

2021

MATHEMATICS — HONOURS

Paper : CC-5

Full Marks : 65

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

 $\mathbb R$ denotes the set of real numbers.

Group – A

(Marks : 20)

 Answer the following multiple choice questions having only one correct option. Choose the correct option and justify: (1+1)×10

(a) $\lim_{x \to 0} \frac{xe^{\frac{1}{x}}}{1+e^{\frac{1}{x}}} =$				
(i) 0	(ii) 1	(iii) $\frac{1}{2}$	(iv) does not exist.	
(b) $\lim_{x \to 0} \left(\frac{\sin \frac{1}{x}}{x} + x \sin \frac{1}{x} \right)$	$\operatorname{in}\frac{1}{x} =$			
(i) 2	(ii) 0	(iii) does not exist	(iv) 1.	
(c) f is defined in (0, 4) by $f(x) = 2x - 2[x]$. Then				
(i) f is continuous at $x = 1$		(ii) f is monotone dee	(ii) f is monotone decreasing in (0, 4)	
(iii) f is not continuous at $x = 1$		(iv) f is constant in (0	(iv) f is constant in $(0, 4)$.	
(d) Which of the following functions has finite number of points of discontinuity in \mathbb{R} ?				
(i) tan x		(ii) $x[x]$		
$\left(\frac{ x }{ x } \right)$. if $x \neq 0$			

(iii) $f(x) = \begin{cases} \frac{|x|}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$ (iv) $\sin[\pi x].$

Please Turn Over

- (e) A real-valued continuous function f assumes only irrational values in [1, 2] and f (1.5) = $\sqrt{\pi}$, then
 - (i) $f(x) = \frac{1}{2}$ everywhere in [1, 2]
 - (ii) f(x) = 0, everywhere in [1, 2]
 - (iii) $f(x) = \sqrt{\pi}$, everywhere in [1, 2]
 - (iv) $f(x) = \pi$, everywhere in [1, 2].
- (f) $f(x) = x^2, x \in \mathbb{R}$, then
 - (i) f is uniformly continuous in $(a, \infty), a \in \mathbb{R}$
 - (ii) f is not continuous in $(a, \infty), a \in \mathbb{R}$
 - (iii) f is constant in $(a, \infty), a \in \mathbb{R}$
 - (iv) f is uniformly continuous in [a, b] but not uniformly continuous in (a, ∞) , where $-\infty < a, b < \infty$.

(g) A function f is defined in [-1, 1] by
$$f(x) = \begin{cases} 1 - x^2 & \text{for } -1 \le x < 0 \\ x^2 + x + 1 & \text{for } 0 \le x \le 1 \end{cases}$$
.

Then

- (i) f'(x) = 0 at x = 0(ii) f'(x) = 1 at x = 0
- (iii) f is not differentiable at x = 0

(iv)
$$f$$
 is not continuous at $x = 0$

(h)
$$f(x) = x^x$$
, $x > 0$, then

- (i) f(x) has a local maximum at $x = \frac{1}{e}$
- (ii) f(x) has a local minimum at x = e
- (iii) f(x) has neither a local minimum nor a local maximum at $x = \frac{1}{e}$
- (iv) f(x) has local minimum at $x = \frac{1}{e}$.

(i)
$$\lim_{x \to 0} \frac{x - \tan x}{x^3} =$$

(i)
$$-\frac{1}{2}$$

iii)
$$+\frac{1}{2}$$

- (ii) $\frac{1}{3}$ (iii) $+\frac{1}{2}$ (iv) $-\frac{1}{3}$.
- (j) Let $f: [a, b] \to \mathbb{R}$ be differentiable on [a, b] such that $f'(x) \neq 0 \quad \forall x \in (a, b)$. Then on [a, b](i) f is either increasing or decreasing.
 - (ii) f is neither increasing nor decreasing.
 - (iii) f is a constant function
 - (iv) f(x) = 0 has no root.

V(3rd Sm.)-Mathematics-H/CC-5/CBCS

Group – B

(Marks : 25)

Answer any five questions.

2. (a) Let $f, g : \mathbb{R} \to \mathbb{R}$ be such that $\lim_{x \to c} f(x) = A > 0$ and $\lim_{x \to c} g(x) = \infty$ for some $c \in \mathbb{R}$. Prove that $\lim_{x \to c} [f(x)g(x)] = \infty$.

(b) Use the definition of limit to show that $\lim_{x \to \infty} \frac{x - [x]}{x} = 0$. 3+2

- 3. (a) Apply Sandwich theorem to evaluate $\lim_{x \to 0} (1+x)^{\frac{1}{x}}$.
 - (b) If $f: [a, b] \to \mathbb{R}$ is a continuous function such that $f(x) > 0 \quad \forall x \in [a, b]$. Prove that there exists $\alpha > 0$ such that $f(x) \ge \alpha \quad \forall x \in [a, b]$. 3+2

4. (a) Let $f : [a, b] \to \mathbb{R}$ be a continuous function such that f(a) < 0, f(b) > 0 and $A = \{x \in [a, b] : f(x) < 0\}$. If $w = \sup A$, prove that f(w) = 0.

- (b) Give an example of a function $f : \mathbb{R} \to \mathbb{R}$ such that f is continuous at '0' and f has discontinuity of second kind at every other point in \mathbb{R} . 3+2
- 5. Discuss the continuity of f(x) for $x \ge 0$, where

$$f(x) = \begin{cases} 0, & \text{when } x = 0 \\ \frac{1}{x}, & \text{when } 0 < x < 1 \\ \frac{1}{x^2} \sin \frac{\pi x}{2}, & 1 \le x \le 2 \\ 1 - e^{2 - x}, & \text{for } x > 2 \end{cases}$$
5

6. (a) Evaluate : $\lim_{x \to \infty} \left(1 + \frac{1}{x^2} \right)^x$

(b) Prove that if f(x) is continuous at x = a and for every $\delta > 0$ there is a point $c_{\delta} \in (a - \delta, a + \delta)$ such that $f(c_{\delta}) = 0$, then f(a) = 0.

Please Turn Over

V(3rd Sm.)-Mathematics-H/CC-5/CBCS

7. (a) Show that $f(x) = \frac{1}{x^2}$ is uniformly continuous on $[a, \infty)$ for a > 0 but not uniformly continuous on $(0, \infty)$.

(4)

(b) Examine uniform continuity of $\cos \frac{1}{x}$ on (0, 2). 3+2

5

- 8. Prove or disprove : Monotonic decreasing function on ℝ cannot have jump discontinuity.
- 9. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and $A = \{x \in \mathbb{R} : f(x) > 0\}$. If $c \in A$, show that there exists a neighbourhood N_c of c such that $N_c \subseteq A$.

Using this result, show that $g : \mathbb{R} \to \mathbb{R}$ defined by $g(x) = (-1)^{[2x]}$ is discontinuous at '1'. [x] denotes the largest integer not exceeding x. 3+2

Group – C (Marks : 20)

Answer any four questions.

- 10. (a) Let f be a real valued function on a closed and bounded interval [a, b]. If f'(c) > 0 for some $c \in (a, b)$, prove that f is increasing at x = c.
 - (b) Let $f(x) = x^5 + 4x + 1$, $x \in \mathbb{R}$. Show that f has a inverse function g which is differentiable on \mathbb{R} . Also find g'(1). 3+2
- 11. (a) Let $\phi(x) = f(x) + f(1-x)$ and f''(x) < 0 for all $x \in [0, 1]$. Prove that ϕ is increasing in $0 \le x \le \frac{1}{2}$ and decreasing in $\frac{1}{2} \le x \le 1$.
 - (b) Show that if two functions have equal derivative at every point of (a, b), then they differ only by constant.
 3+2
- 12. (a) Prove that $\log(1+x)$ lies between $x \frac{x^2}{2}$ and $x \frac{x^2}{2(1+x)}$, for all x > 0.

(b) Show that
$$\frac{\sin \alpha - \sin \beta}{\cos \beta - \cos \alpha} = \cot \theta$$
, where $0 < \alpha < \theta < \beta < \frac{\pi}{2}$. $3+2$

5

- 13. (a) Let f be a real valued function on the interval I such that f' exists and bounded on I. Prove that f is uniformly continuous on I.
 - (b) Give an example of a uniform continuous function on [0, 1] which is differentiable on (0, 1) but the derived function is unbounded on (0, 1). 3+2
- 14. State and prove Darboux's theorem on derivatives.
- 15. (a) Where do the function $\sin 3x 3 \sin x$ attain local maximum or local minimum values in $(0, 2\pi)$?

(b) Evaluate
$$\lim_{x \to 1^{-}} \frac{\log(1-x)}{\cot(\pi x)}$$
. 3+2

16. If the sum of the lengths of the hypotenuse and the another side of a right-angled triangle is given, show that the area of the triangle is maximum when the angle between these sides is $\frac{\pi}{3}$. 5